Thermal Properties of Biochars Derived from Waste Biomass Generated by Agricultural and Forestry Sectors
نویسندگان
چکیده
Waste residues produced by agricultural and forestry industries can generate energy and are regarded as a promising source of sustainable fuels. Pyrolysis, where waste biomass is heated under low-oxygen conditions, has recently attracted attention as a means to add value to these residues. The material is carbonized and yields a solid product known as biochar. In this study, eight types of biomass were evaluated for their suitability as raw material to produce biochar. Material was pyrolyzed at either 350 ◦C or 500 ◦C and changes in ash content, volatile solids, fixed carbon, higher heating value (HHV) and yield were assessed. For pyrolysis at 350 ◦C, significant correlations (p < 0.01) between the biochars’ ash and fixed carbon content and their HHVs were observed. Masson pine wood and Chinese fir wood biochars pyrolyzed at 350 ◦C and the bamboo sawdust biochar pyrolyzed at 500 ◦C were suitable for direct use in fuel applications, as reflected by their higher HHVs, higher energy density, greater fixed carbon and lower ash contents. Rice straw was a poor substrate as the resultant biochar contained less than 60% fixed carbon and a relatively low HHV. Of the suitable residues, carbonization via pyrolysis is a promising technology to add value to pecan shells and Miscanthus.
منابع مشابه
Physical and chemical characterization of waste wood derived biochars.
Biochar, a solid byproduct generated during waste biomass pyrolysis or gasification in the absence (or near-absence) of oxygen, has recently garnered interest for both agricultural and environmental management purposes owing to its unique physicochemical properties. Favorable properties of biochar include its high surface area and porosity, and ability to adsorb a variety of compounds, includin...
متن کاملImpact of Different Agricultural Waste Biochars on Maize Biomass and Soil Water Content in a Brazilian Cerrado Arenosol
Arenosols in the Brazilian Cerrado are increasingly being used for agricultural production, particularly maize. These sandy soils are characterized by low soil organic matter, low available nutrients, and poor water-holding capacity. For this reason, adding biochar as a soil amendment could lead to improved water and nutrient retention. A greenhouse experiment was carried out using twelve bioch...
متن کاملSub-critical water as a green solvent for production of valuable materials from agricultural waste biomass: A review of recent work
Agricultural waste biomass generated from agricultural production and food processing industry are abundant, such as durian peel, mango peel, corn straw, rice bran, corn shell, potato peel and many more. Due to low commercial value, these wastes are disposed in landfill, which if not managed properly may cause environmental problems. Currently, environmental laws and regulations pertaining to ...
متن کاملBiochars Derived from Gasified Feedstocks Increase the Growth and Improve Nutrient Acquisition of Triticum aestivum (L.) Grown in Agricultural Alfisols
Biochars are produced by low-oxygen gasification or pyrolysis of organic waste products, and can be co-produced with energy, achieving waste diversion and delivering a soil amendment that can improve agricultural yields. Although many studies have reported the agronomic benefits of biochars produced from pyrolysis, few have interrogated the ability of gasified biochars to improve crop productiv...
متن کاملSorption of bisphenol A, 17α-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars.
Thermal and hydrothermal biochars were characterized, and adsorption of bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and phenanthrene (Phen) was determined to investigate the sorption characteristic difference between the two types of biochars. Thermal biochars were composed mostly of aromatic moieties, with low H/C and O/C ratios as compared to hydrothermal ones having diverse functional gro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017